Randomly Pivoted Cholesky: Investigation and
Applications

Ryan Divan

Princeton University,
rd2700@princeton.edu

Abstract. This is a brief report on "Randomly pivoted Cholesky" by
Chen et al. (2024) for the MAT321 at Princeton University in Fall 2025,
taught by Professor Marc Auréle Gilles. This report includes an overview
of key findings in the paper and is accompanied by a Github repository
with algorithm implementations and interesting results arising from the
algorithm and its applications.

1 Introduction

In modern applications, particularly data science and machine learning, high-
dimensional matrices are commonly used for a variety of tasks. However, due to
the structured nature of such matrices, especially kernel matrices, much of their
structure and information can be captured by a low-rank approximation. This
leads us to a motivating theorem that describes the best low-rank approximation
to a real matrix:

Theorem 1 (Eckart-Young-Mirsky). Let A € R™*™ and let A; denote the
truncated singular value decomposition (SVD) of A, ie. Ay = Zle ol
where {u;} and {v;} are left and right singular vectors of A respectively. Then,
where || - || denotes the 2-norm or the Frobenius norm, it follows that:

A —Af| = min |A—BJ|
BeR™ X" rank(B)=t

In other words, the truncated SVD A; is the best rank ¢ approximation of
A under the 2-norm and the Frobenius norm. This has some brilliant effects on
computational and storage efficiency; we need only store the singular values and
the singular vectors, which is O(t(n+m)), and for matrix-vector multiplication,
we can calculate A;z in O(t(n+m)) as opposed to O(nm). However, computing
the SVD (and consequently the truncated SVD) is computationally expensive,
on the order of O(m?n) (assuming m > n), which can outweigh its optimality as
an approximation in many applications where lower precision can be accepted.

In many kernel methods in machine learning, we end up dealing with symmetric
positive semi-definite (PSD) kernel matrices that exhibit significant spectral
decay; in this case, Chen et al. (2024) propose the randomly pivoted Cholesky
algorithm (RPCholesky), which exploits this common structure of kernel matrices

to avoid the computational burden of other factorization method while providing
a reliable Nystrom approximation to A that can be leveraged for efficient kernel
methods in machine learning and scientific computing: In particular, leveraging
the block RPCholesky variant, we are able to produce a theoretical guarantee in
trace-norm error:

Theorem 2 (Chen et al.). Fix a positive semi-definite matriz A € R™*™,
approximation rank r, and tolerance € € (0,1). Then, let T > r/e be the block
size. After selecting k/T blocks of columns, block RPCholesky produces a random
Nystrém approrimation A with rank k such that:

Etr(A— A) < (1 —e)" tr(A — [[A]],) + ¥/ Ttr(A)

where [[A]], denotes the best rank-r positive semi-definite approximation with
respect to trace-norm error tr(A — [[A]],).

The RPCholesky algorithm is able to tremendously decrease time and storage
complexity for kernel methods in scientific computing while suffering negligible
loss in accuracy due to this theoretical guarantee. In this paper, we will explore
several interesting features of this algorithm, experimental results, and applications
in domains not explored in the original paper.

2 Algorithm Overview

Algorithm 1 RPCholesky

Input: PSD matrix A € C"*"; approximation rank k
Output: Pivot set S = {s1,...,sr}; matrix F € C"** such that A =FF*
Initialize: F <= Onxk, d < diag(A)
for i =1 to k do
Sample pivot s; ~ d/ Z;\le d(j) > Probability proportional to residual diagonal

g < A(, s:) > Evaluate column s of input matrix

g+~g—F(,1:9i—1)F(s;,1:4—1)" > Remove overlap with previous columns

F(:,i) < g/\/9(si) > Update approximation

d+d—|F(;i) > Track diagonal of residual matrix

d < max{d, 0} > Ensure diagonal remains nonnegative
end for

The basic RPCholesky algorithm is a variant of the pivoted partial Cholesky
algorithm, which only deviates at the sampling step; while RPCholesky samples
with probability proportional to the residual diagonal, other strategies include
uniform sampling and greedy sampling (which effectively makes the algorithm
deterministic). These methods are united in producing a column Nystrém approximation,
which is defined as follows:

Definition 1 (polumn Nystrom Approximation). The column Nystrém
approximation A of an SPD matriz A € R™ ™ is defined as follows:

A= A[:,8)A[S, S]TA[S,], where S C [1,n]
Note that At denotes the Moore-Penrose pseudoinverse of a matriz A and S is a

set of pivot indices. The Nystrom approzimation is usually given in the factorized
form A= F*F.

There are a few key properties the Nystrom approximation enjoys.

1. The Nystrom approximation A agrees with the matrix A at the pivot columns
S, ie. A[;, 8] = A[;, S]. R

2. The range of the approximation A is precisely the span of the selected
columns of A, i.e. range(A) = range(A[:, 5]).

3. We have that A satisfies 0 < A < A, where for any Hermitian matrices X, Y,
Y < X implies X — Y is positive semi-definite.

In fact, we have that A is the maximal SPD matrix that satisfies properties
2 and 3, where maximal is with respect to the Loewner ordering < defined
above. The goal of the original paper was to find a set of pivots S for which
the trace norm is minimized (and certainly tr(A — /1) > () since A < A), since
this norm is particularly relevant to and applicable in kernel learning contexts.
In applications, the random selection proportional to the diagonal is an optimal
choice, providing theoretical guarantees and practical results to be discussed in
the following sections.

3 Main Theorem and Theoretical Guarantees

We can augment the RPCholesky algorithm with a key variant, block RPCholesky,
with a block parameter 7' > 1 (pseudocode below). This is inspired by past
work with pivoted QR decompositions, and convergence for similar methods for
pivoted Cholesky can be shown. In particular, at step ¢, we select T" pivot columns
with probability proportional to the diagonal of A®~1. Then, we update A’ by
eliminating these columns, and repeat.

In particular, this algorithm is able to enjoy the trace-norm error guarantee
from Theorem 2, since it has nontrivial block size T. One drawback is that T
is determined by r and €, and thus these factors must be determined a priori.
However, we are able to find a strong bound that also provides a theoretical
guarantee when we presume 1" = 1 a priori, which is the same as Algorithm 1:

Theorem 3 (Randomly pivoted Cholesky). Let A be PSD. Fizr € N,e >
0. Then, the rank-k column Nystrém approzimation A%*) produced by RPCholesky
(with block size 1, i.e. Algorithm 1) satisfies the following bound:

Etn(A— A®) < (14) tr(A — [[4])},)

when the number of columns k satisfies the following inequality:

1 2"
k> r —i—min{rlog () ,r—i—rmax{log () ,0}}
€ €n €

Algorithm 2 Block RPCholesky

Input: PSD matrix A € CV*¥; block size T’ tolerance 1 or approximation rank k
which is a multiple of T R

Output: Pivot set S; matrix F' defining Nystrém approximation A = FF*
Initialize F' <~ Onxk, S < 0, and d + diag A > Evaluate diagonal of input matrix

for i=0to k/T —1 do > Alternatively, run until Zj\le d(j) <ntrA
Sample SiT41, .-, SiT+T id d/ Z;VZI d(y) > Probability prop. to diagonal
S’ < UNIQUE({SiT+1,- -, SiT+T})
S+ Suys
G+ A(;,S) > Evaluate columns S’ of input matrix
G+ G-FF(S,:)* > Remove overlap with prev. columns
R « CHOL(G(S',:) 4 €macn tr(G(S',:))I) > Stabilized Cholesky G(S',:) ~ R*R
F(,iT+1:iT+19]) + GR™! > Update approximation
d <+ d — SQUAREDROWNORMS(GR ™) > Track diagonal of residual matrix
d < max{d,0} > Ensure diagonal remains nonnegative
end for

Remove zero columns from F'

This is the main theorem of the paper, and there are a few key takeaways.
Firstly, for any pair of » € N and € > 0, this theoretical bound holds for all
steps k. This replaces the vacuous statement from Theorem 2 in the case that
T = 1. We also do not need any prior knowledge of these parameters, allowing
for a simpler implementation than the Block RPCholesky for similar guarantees.

The lower bound on k can be split into two conditions, both of which are
sufficient. In the first case, if we have & > £ 4 rlog(1/en), this gives us a linear
dependence on 7 and is comparable to the bound k > %, as per the original paper.
The second bound, k& > £ 4-r +11log(2" /€) gives us a quadratic dependence on r
but also shows us that convergence is not dependent on the tolerance parameter.
Chen et al. also suggest that the quadratic dependence may be a symptom of
the proof technique, rather than a concrete diagnosis of the algorithm.

This proof also gives a similar bound for randomly pivoted QR, which is
promising for randomized numerical linear algebra method as a whole, although
out of the scope of this review.

Given this theoretical bound, alongside the given features of Algorithm 1,
we are able to see that RP Cholesky has the four desirable properties outlined
in the original paper:

1. Cheap entry evaluations. We only need O(kn) entries of the kernel matrix
to compute a rank k£ approximation.

2. Low time and storage complexity. The method takes O(k*n) times in
terms of arithmetic operations. Furthermore, the storage cost is O(kn), since
the Nystrom factor F' has kn entries.

3. Approximation quality. The rank-k Nystrom approximation produced by
RPCholesky is competitive with the optimal rank r approximation, where
r < k but not by a significant factor.

4. Simplicity. RPCholesky is easy to implement, works for any suitable input,
and does not require the user to modify parameters or hyperparameters.

These conditions are excellent for widespread use of RPCholesky, and pose
significiant benefits for kernel methods. The random pivot selection further
increases the advantages of this method over pivoted partial Cholesky with
traditional methods like greedy and uniform selection, as will be demonstrated
with numerical experiments in the next section.

4 Numerical Experiments

For this section, we begin with a brief implementation of the standard RPCholesky
algorithm in Python, which is given below:

def RPCholesky(A: np.array, k: int):
Args:
A: SPD nzn matrixz with complex entries
k: Approzimation rank
Outputs:
S: set of k randomly chosen pivots
F: nzk Nystroem approxzimation of A
assert A.shapel[0] == A.shape[1], "A must be square"
n = A.shape[0]
F = np.zeros((n, k), dtype= A.dtype)
d = np.diag(A)
s =10
for i in range(k):
S.append (np.random.choice(range(n), p=d/np.sum(d)))
g = A[:, s[il]
g=g - F[:,:1] @ np.conj(F[S[i], :i]).T
F[:, il = g / np.sqrt(gl[S[il])
d =d - np.abs(F[:, i]) *x 2
np.maximum(d,0,d)
return F, S

The rather concise implementation of this method makes it highly flexible
for applications, allowing users and researchers to leverage it with neither a
significant investment in implementing it nor significant time in tuning hyperparameters,
thanks to the bounds established in Theorem 3. The key parameter to be tuned
is the approximation rank, which can be numerically verified for many matrices
with well-known structure. One example of such matrices is Hankel matrices
with spectral decay, which will be analyzed in the next section.

4.1 Alternate Pivoting Strategies

To demonstrate some of the tangible numerical gains of the RPCholesky method,
we first present a comparison of RPCholesky against pivoted partial Cholesky
with other selection strategies, namely uniform and greedy selection. For this
task, similarly to the original paper, we have chosen a smiley face kernel and
a spiral kernel to highlight cases where RPCholesky captures a more faithful
representation of the data.

‘Smiley - Uniform Smiley - Greedy ‘Smiley - RPCholesky

oata
et AU, ® P » ~, = A

- - - L4 -
* » »
LR S) . ® 7 TR S N
. % . . : & .
* . H
. - - ®
.
p: . P .
* » . »
L] - - -
* . ¥ . * *
L = =*
N - e * » g » . . F.
.
- = -
> .
iy g e TP S e T
‘Spiral - Uniform Spiral - Greedy Spiral - RPCholesky
. »
.-, s
* -
y * . p ®
- - -
» »
* o " . »
@ » . * . . .
. . . » .
% *) . * e .
. . » 4 . .
. % .] . . 4 4
e # . . } . .
% »

Fig. 1. Pivot selection on smiley face and spiral kernels from uniform, greedy, and
RPCholesky strategies

For the smiley face, we notice that the greedy strategy does not choose
points that entirely capture the features of the image. The uniform strategy
has a better outcome, but the selections are more concentrated around the smile
and eyes, which is reasonable due to the increased density of points in those
regions. However, the RPCholesky method is able to balance selecting the high-
density features, like the smile and eyes, while also sampling the sparser but
more significant features like the outline of the face that the greedy algorithm
prioritized.

As for the spiral, the uniform selection strategy did not produce particularly
noteworthy results; the greedy algorithm chose roughly equispaced points on the
spiral, but this gave higher weight to the outermost points and failed to capture
finer detail like curvature. These shortcomings were avoided for the most part
by RPCholesky; the algorithm was able to select many distinctive features but
also chose more points at areas with more curvature, remaining more faithful to
the features of the spiral.

Test cases such as these are particularly compelling for the use of sampling
proportional to the diagonal, as the stochasticity introduced can avoid the pitfalls

of greedy methods in cases such as these while allowing for more representative
data than a purely uniform strategy. It is important to note that the greedy
algorithm allows for some marginal accuracy to be gained for most random
matrices, i.e. those without particular special structure or spectral decay, as
discovered from a few numerical tests. However, for those matrices which have
structure that can be exploited, particularly PSD matrices with spectral decay,
RPCholesky comes out ahead. Particularly for kernel methods, like kernel ridge
regression, the ability for RPCholesky to capture features without succumbing
to either of these shortcomings is a plausible explanation for its success over
other sampling methods in the original paper.

4.2 Experimental Testing of Theoretical Bounds

To verify the theoretical bounds from Theorem 2 and Theorem 3, we introduce
a Python implementation of block RPCholesky:

def BlockRPCholesky(A: np.array, k: int, T: int, nu: float):
Args:

A: SPD nzn matrixz with complex entries

k: Approzimation rank

T: Number of blocks

nu: Tolerance for stopping criterion

Outputs:
F: nzk Nystroem approxzimation of A
S: set of k randomly chosen pivots

assert k % T == 0, "k must be divisible by T"
assert nu > 0, "nu must be positive"

assert A.shape[0] == A.shape[1], "A must be square"
n = A.shape[0]

eps = le-16

F = np.zeros((n, k), dtype=A.dtype)
d = np.diag(A)
s=10
print (F.shape)
for i in range(k // T - 1):
Sp = np.random.choice(range(n), size=T, p=d/np.sum(d))
Sp = np.unique(Sp).tolist()
S.extend(Sp)
G = A[:, Sp]
G=G-F @np.conj(F[Sp, :1).T
shift = eps * np.linalg.trace(G[Sp, :]1) * np.eye(len(Sp))
R = np.linalg.cholesky(G[Sp, :] + shift, upper=True)

F[:, i * T:i * T + len(Sp)] = np.linalg.solve(R.T, G.T).T
d =d - np.sum(np.abs(F[:, i * T:i * T + len(Sp)]) ** 2, axis=1)
np.maximum(d, 0, d)
if np.sum(d) < nu:
break
F = F[:, "np.all(F == 0, axis=0)]
return F, S

To demonstrate the error bound as indicated by the literature in the prior
theorems, we’ve implemented a Python method that plots the trace-norm error
at several values of k for RPCholesky alongside the theoretical bound, with a
fixed r = 50 for an RBF kernel:

Theorem 2: Block RPCholesky (RBF) Theorem 3: Standard RPCholesky (RBF)
(r=50, T=10 [r>>T regime]) (r=50)
______ 2.0 ~, == Theoretical Bound
20 = AN —e— Actual Ratio

10
101 == Theoretical Bound Ratio
—e— Actual Ratio

60 80 100 120 140 60 80 100 120 140 160 180 200

Error Ratio (Actual / Optimal_r)
Error Ratio (Actual / Optimal_r)

Fig. 2. Empirical testing of error bounds established by Theorem 2 and Theorem
3. Plots RPCholesky approximation rank & against ratio of trace-norm error to best
rank-r trace-norm error.

An initial survey of the results reveals that the theoretical bound established
by Theorem 2 for block RPCholesky is not particularly tight. As indicated by
the graph, the first few iterations (approximately 5, since 7' must divide k) give
a fair estimate with about 10% trace-norm error in excess. A shortfall of this,
however, is that for small epsilon, we have that the required block size and
consequently approximation rank k grows dramatically. This is a consequence
of the restriction that T' = r/e; the above figure uses a presumed ¢ = 5, and
requiring further precision will increase the looseness of this bound.

However, for the empirical testing of Theorem 3, it can be seen that the
bound is much tighter; here, the values of k are inferred from r and a varying e
parameter to fit the assumptions of the theorem. While the bound does remain
somewhat loose, this may be a result of the rank of the matrix being used and
can benefit from more numerical testing. Nonetheless, it is clear that Chen et
al. provide a much tighter bound; as stated in the original paper, however, the
experiments indicate that a bound tighter still may be achieved due to limitations
of the proof technique in the original paper.

5 RPCholesky for SPD Hankel Matrices

In a recent paper from the Hazan Lab at Princeton University, Liu et al. (2025)
proposed Flash Spectral Transform Units (STUs), which leverage spectral filters
formed from the dominant eigenvectors of a Hankel matrix for long-term sequence
modeling, providing several advantages over the traditional transformer architecture.
While the Hankel matrix is fixed before training, computing its dominant eigenvectors
is expensive with the standard np.linalg.eigh method; if H € R™*"™, the standard
method is O(n®). While this computational tradeoff is acceptable when the
Hankel eigenvectors need to be computed once, before training, this precludes
the efficient recomputation of the Hankel matrix during inference, which may
prove promising for model performance in linear dynamical systems, the focus of
the original paper. Thus, we propose an RPCholesky improvement; real Hankel
matrices exhibit significant spectral decay, providing prime conditions to apply
RPCholesky.

To this end, we have implemented an implicit RPCholesky method that can
decompose a Hankel matrix with the required properties:

Algorithm 3 Implicit Hankel RPCholesky

Input: PSD Hankel matrix H € R™ ™, represented by a vector h € R*"!;
approximation rank k
Output: Pivot set S = {s1,...,sr}; matrix F € R"** such that H = FF*
Initialize: F < Opxk, d < h[:: 2]
for i =1 to k do

Sample pivot s; ~ d/ Z;\f:l d(j) > Probability proportional to residual diagonal

g < h(si,s; +n) > Evaluate column s of input matrix
g <— g F(:1 z — 1)F(si, 1:i—1)" > Remove overlap with previous columns

)< g/\Vg > Update approximation
d <— d |F(:,)|2 > Track diagonal of residual matrix
d + max{d, 0} > Ensure diagonal remains nonnegative

end forr = [S| F = F[,]

This is very similar to Algorithm 1, except we initialize only using a vector
defining the entire Hankel matrix. The entries of this vector are the first column
and the last row of the Hankel matrix, where they coincide at entry n of the
vector. One apparent drawback is that instead of encoding the Hankel matrix
in a vector with storage O(n), the resulting factor F takes up O(kn); however,
in the context of FlashSTU, k is sufficiently small (typically 24) to make this
storage effectively O(n).

There are two key applications of this method in this context; low-rank
approximation of the Hankel matrix and faster eigenvector finding for the spectral
filters used in the FlashSTU architecture. For the low-rank approximation, RPCholesky
is able to compute an approximation incredibly quickly due to the relatively
low rank of the Hankel matrices. However, it is important to note that we can

precisely calculate each entry of the Hankel matrix from its defining vector, so
this may in fact be counterproductive. Should we need to repeatedly act on
the Hankel matrix with other linear operators, the Nystom factors may speed
up computation, but it is reasonable to expect that we can exploit the Hankel
structure for fast matmul similar to how it can be used for fast matvec.

However, we do see significant runtime gains when attempting to get a full
eigendecomposition of the Hankel matrix; in particular, when running with a
matrix in R™”*" with n & 10, 000, np.linalg.eigh takes approximately two minutes
on an M4 Max CPU while running np.linalg.svd on the Nystrém factor F and
computing an estimate to the eigenvalues and eigenvectors from there takes
approximately 0.5 seconds. This is a significant gain, but there are two key
considerations: the accuracy and the efficacy of other methods.

Eigenvector alignment Residuals (lower is better) Runtime comparison

H
2

10-11

Residual [[Hv - Av[|/JA|
Time [s] (log scale)

10-12 4

Cosine with true dominant eigenvector
=
=1
IS

10-15 4

eigh power RPCholesky eigh power RPCholesky eigh power RPCholesky

Fig. 3. Eigenvector accuracy (cosine similarity to true dominant eigenvector), residual,
and runtime for np.linalg.eigh, Power method, and RPCholesky decomposition method

In terms of speed, we see that while RPCholesky dominates the built-in
eigenvalue solving method (which is unoptimized) using the power and inverse
methods is dramatically faster, due to the efficient matvec with the Hankel
matrix. Not only that, but convergence is much nicer using the tighter theoretical
bounds, as the Hankel matrix has a larger distance between its eigenvalues as
a result of spectral decay. This, unfortunately, means that RPCholesky is not
quite applicable to the eigenvalue and eigenvector problem in a practical sense.
However, we can still examine its effect on the spectrum of the Hankel matrix,
which is seen on the next page.

First, we note that the dominant eigenvector is very faithful to the original;
this high fidelity is promising for using the spectra of an RPCholesky-generated
Nystrém approximation, and this may open up the opportunity for RPCholesky
to be used to calculate a dominant eigenvector for matrices that are very poorly
conditioned for the power method or inverse method. However, it is likely that
such method already exist without the storage burden or stochasticity that are
inherent to the RPCholesky factorization. From there, the eigenvector accuracy
drops off dramatically, with the third vector having a 0.09 cosine similarity.

Eigenvector 1 (Overlap: 1.0000)

—— True Eigenvector
0.06 = = RPCholesky Approx
0.04
0.02
0.00 A
-0.02 1
—0.04 1
—0.06 1
l‘) 2('10 460 660 8(')0 10‘00
Eigenvector 2 (Overlap: 0.5344)
1 H 1 ~—— True Eigenvector
0.06 i
. i I 1 i i it 1 . ~ — RPCholesky Approx
i : R, SEEL, ilRL, AR i oY i
0041 Y, ' 'l 3 |Il "illl.' i|l-i'
il ‘ |' Ii| .|| Ill‘ HH nll:: :hllll'
il | | a0 A AN H
0.02 ': | ' I i | 14 A 5 | 3 [o s
| |‘, 1 , 1 L 1 |'l;
007 | 0 o O
| i |y 1 | '
\ ‘ ')
~0.02 A | |
—0.04 1
' 1
~0.06 7 :
l‘) 2(’)0 460 660 8l’)0 10‘00
Eigenvector 3 (Overlap: 0.0934)
0.06 -] “I] 3 iz 1 ~——— True Eigenvector
II || — — RPCholesky Approx
0.04 : !
0.02 j g e
0.00 il i Al
' il I i
—0.02 W ke
—0.04 1
! !] I I 1 I
I] |]
-o0s{ ! ! i y y ! ; { '
0 200 400 600 800 1000

Fig. 4. RPCholesky approximation of Hankel matrix spectra versus built-in method

np.linalg.eigh

6 Conclusion

This report investigated the Randomly Pivoted Cholesky (RPCholesky) algorithm,
validating its theoretical guarantees and exploring its application across diverse
domains, from standard kernel methods to structured linear dynamical systems.
The numerical experiments confirm that RPCholesky is able to bridge between
the efficiency of uniform sampling and the quality of greedy sampling, while
avoiding their pitfalls in the "smiley" and "spiral" kernel examples.

A key contribution of this report was the novel application of RPCholesky
to Hankel matrices within the FlashSTU architecture. While the results indicated
that RPCholesky did not outperform the Power Method for eigenvector computation,
this result offers insight into the algorithm’s optimal use cases. RPCholesky
performs exceptionally well in settings involving dense kernel matrices, as shown
in the original paper, where entry evaluation is cheap but full matrix operations
are expensive (O(n?)). However, for structured matrices like Hankel matrices
which admit cheap matvec functions, the overhead of constructing a Nystrém
factor outweighs the benefits of the factorization. The results of the experimentation
with Hankel matrices highlight that the RPCholesky algorithm is best-suited
for data compression in dense kernel matrices rather than spectral problems in
structured operators.

It is also important to note that the method still sees success in its applications
to kernel methods, like kernel spectral clustering and kernel ridge regression,
as emphasized in the original paper. However, given the Hankel application,
there is much to be explored in terms of using the RPCholesky for specially
structured matrices and leveraging other algorithms like the nonuniform FFT
and specialized matvec operations to develop quick and simple factorizations of
complicated kernel matrices.

08

02

—8— RPCholesky
=== Fulls¥M

—&— RPCholesky
=== Full sVM

00
200 400 600 800 1000 200 400 600 800 1000

Rank k Rank k

Fig. 5. RPCholesky vs. SVM for MNIST classification, in terms of time and accuracy

The machine learning implications in particular are promising; in the typical
MNIST digit classifcation task, RPCholesky was able to produce similar accuracy

as the SVM method with a much lower time complexity. Although this accuracy
plateaud and would only reach the SVM accuracy when the rank of the approximation
matched the rank of the matrix, there are potential applications in terms of
boosting algorithms that can use an ensemble of these "RPCholesky learners,"
which are not as accurate as a strong learner but would prove easier to boost
than a weak learner. However, particular machine learning applications should

be explored with more focus in another paper, and it would be prudent to
particularly focus on more robust kernel and clustering methods that RPCholesky

has proven to perform adequately in.

Overall, RPCholesky is a useful algorithm with clear applications to scientific
computing, with its random aspects providing clear value in specific cases that
the greedy and uniform methods cannot consistently match. While the theoretical
bounds on the algorithm have room to improve, this is promising for the practical
applications of the algorithm for a quick, efficient low-rank approximation for
PSD matrices that may not be nice enough for other factorization methods.

Acknowledgments

I acknowledge the contribution of LLMs to this report, particularly Gemini 3 Pro
via Cursor for generation of numerical tests and graphics used in this report. I
also acknowledge consultation with the Github repositories associated with the
original RPCholesky and FlashSTU papers, found at github.com/eepperly/
randomly-pivoted-cholesky/ and github.com/hazan-1lab/flash-stu/ respectively.

References

1. Chen, Y., Epperly, E., Tropp, J., Webber, R.: Randomly pivoted Cholesky:
Practical approximation of a kernel matrix with few entry evaluations. (2024).
https://arxiv.org/abs/2207.06503.

2. Y. Isabel Liu, Windsor Nguyen, Yagiz Devre, Evan Dogariu, Anirudha
Majumdar, Elad Hazan: Flash STU: Fast Spectral Transform Units. (2025).
https://arxiv.org/abs/2409.10489.

Further Results

A Jupyter notebook summarizing a few of the main experiments can be found at

https://colab.research.google.com/drive/1L6TusyctiyxK0- AWubxsTkyvp5TKAJEL?

usp=sharing.

